阅读:0
听报道
导语
从感知机模型,到深度神经网络的发明,都受到了生物神经系统的启发。在本周Science的一篇评论文章中,研究者认为,将深度学习与类似人脑的先天结构相结合,能够让神经网络模型更接近人类学习模型。
编译:集智俱乐部翻译组
来源:Science
原题:
Using neuroscience to develop artificial intelligence
1950年,数学家艾伦图灵在他的论文开头提出了一个重要的问题:机器能思考吗?就此,人类展开了对人工智能的探索。
而目前唯一已知的、能进行复杂计算的系统就是生物神经系统,这也就不奇怪——为什么人工智能领域的科学家们会将大脑神经回路视作灵感的来源。
在人工智能领域发展的早期,科学家就研究过使用类似大脑结构的电路进行智能计算。近些年,这一研究方法诞生的最伟大成果就是一个高度精简的大脑皮层回路模型:神经网络。
这个模型受到了大脑神经网络模型的启发。神经网络模型由多层神经元构成,可以通过调节参数权重的大小来调节这些神经元之间连接的强弱,这种结构与神经科学中的突触相对应。
深度神经网络以及相关的方法在人工智能系统的应用中已经带来了深远的变革。在计算机视觉、语音识别以及游戏博弈等人工智能的核心领域,神经网络都有着举足轻重的影响力,相较其它模型更甚。在应用领域,语音文本翻译以及计算机视觉这些问题中都广泛应用神经网络方法。
本文我们将会讨论,大脑神经元回路如何为神经网络方法提供新的指引和洞见,使得神经网络能够成为一种强人工智能方法。
从深度学习到强化学习
深度神经网络
深度神经网络的关键问题就是学习问题:如何通过调整神经元之间连接的权重,使得输入的数据能够得到期望的输出,方法是通过对样本的训练自动调整权重。训练样本提供了一套输入数据以及与之所对应的输出数据。深度神经网络通过调整神经元之间的权重,使得输入数据能够产生与期望相对应的输出。
一个好的学习过程,不仅仅是记住了输入样本,同时能够泛化模型,使得模型在遇到没有学习过的样本数据时,也能够得到正确的输出结果。
我们将深度神经网络模型与核磁共振成像以及生物行为数据等实证生理学方法提供的结果相比较,会发现大脑与深度神经网络模型的异同之处。与灵长类生物的视觉系统相比,这两种神经模型的早期神经反应阶段比后期阶段更为接近。这表明我们人造的深度神经网络,能够更好的处理早期神经反应阶段,后期认知过程的处理能力还比较差。
强化学习
除了深度神经网络以外,人工智能模型近期还增添了一员“大将”:强化学习——大脑收到了奖励信号就能够改变行为的机制。强化学习能够表征人或者动物在全世界范围内的行为,并且接收奖励信号。研究者们已经广泛地研究了这种学习模型的大脑反应机制,并且应用到人工智能领域,特别是机器人领域。
强化学习的目标是学习一个最优策略,构建一种从状态到行动的映射,以此来优化所有时间内能获得的收益。近期的人工智能研究中已经将强化学习与深度学习相结合,特别是在诸如视频游戏、棋类游戏(国际象棋、围棋和日本将棋)等复杂的游戏活动中。
深度神经网络和强化学习相结合的模型产生了应为惊讶的结果:人工智能已经击败了国际围棋大师,并且仅需要4小时的训练就能够达到大师级的水平,而且并没有依赖于人类的棋谱,而是通过自我博弈达到这样的结果。
神经网络:人工 VS. 生物
一个悬而未决的问题是:与大脑神经回路相比,当前我们所使用的深度神经网络模型结构极其简单,这样的简化是否能够捕捉到人类学习与认知的全部能力?
从神经科学引领人工智能的视角来看,我们必须承认目前取得的结果令人惊讶。与大脑皮层的神经回路相比,神经网络模型做了许多简化,同时也加入了另外一些受到脑神经科学启发的结构,比如归一化处理以及注意力模型。但是一般来说,我们所熟知的关于神经元的所有东西(结构、类型以及关联性等等特征)都被排除在了神经网络模型之外。
目前科学家们并不清楚,对于神经网络这个人工智能模型而言,哪些生物神经结构是必不可少且能发挥作用的。但是生物神经结构和深度神经网络结构的差异已经非常明显了,比如说生物神经元在形态结构、生理特征以及神经化学方面千差万别且结构复杂。典型的例子有,兴奋性椎体神经元的输入分布在复杂树突的顶部和底部;抑制性皮质神经元具有多种不同的形态,且能执行不同的功能。
神经网络模型不仅没有包含这种异质性以及其它复杂的特征,相反,人工神经网络使用了高度精简且一致统一的数学函数作为神经元。就神经元之间的连接方式而言,生物神经元也比神经网络要复杂许多,同层神经元之间的连接,局部连接与远程连接,以及皮层区不同层级之间自上而下的连接,以及可能存在局部的“规范电路”。
深度神经网络主要的成绩还是在处理现实世界中诸如语音信息和视觉信息等感知数据上。在图像视觉领域,神经网络模型最初是用来处理感知问题,例如对图像进行分割以及分类。
在这些工作的基础上加上一些扩展,我们就能够让神经网络模型处理更加复杂的问题。
例如为图像提供说明文字,利用一段简短的语言描述图片的内容,或者识别图片的内容并回答人类的提问。
非视觉问题,比如理解图片的潜在含义:幽默还是讽刺?或者通过图片理解其中的物理结构以及社会现象等。不仅如此,科学家们也在努力让这样的神经网络应用在自动翻译、个人辅助、医疗诊断、高级机器人以及自动驾驶等其它领域。
人们在人工智能领域的研发投入以及资金投入都与日俱增,但这同时也带来了一些的疑难问题——人工智能到底能否带来真实?能否产生和人类类似的理解能力?甚至人工智能是否会和人类智能走向完全不同的方向?这些问题都是未知的,并且人类在该领域的科学研究以及商业实践上都下了重注。
倘若当前的神经网络模型在认知能力方面被证明是有限的,那么自然研究者还需要到神经科学中去寻找启示。目前被人们所忽略的大脑神经中的种种细节是否能为构建强人工智能提供一把钥匙?我们人类大脑中哪些结构是特别重要的,这一点并没有定论。
认知能力取决于先天结构还是后天学习?
虽然我们人类对自己大脑神经回路的理解还很有限,但我们仍然可以正视一个常见的问题——人脑神经和深度神经网络模型有着根本的不同,这种不同可能在寻找类似人类的强人工智能的道路上起到至关重要的作用。
这涉及到了一个古老的认知问题,是经验主义还是先天主义?换句话说就是:先天的认知结构和一般的学习机制二者的相互作用问题。
婴儿期视觉学习带来的启示
目前的智能模型倾向于经验主义,使用相对简单统一的网络结构,主要依靠学习过程以及大量的训练数据来提高认知能力。相比而言,生物体往往是在经过很有限的训练就能够完成复杂的任务,许多的学习任务是由先天的神经结构来完成的。换句话说,生物的学习是举一反三,而神经网络是举三反一。
比如说许多物种,诸如昆虫、鱼类、鸟类都有着一套复杂且独特的机制来执行导航任务。就人类而言,人类的婴儿出生几个月就能够进行复杂的认知工作,而这时的人类并不能接受具体的训练,相反婴儿能够本能的去识别物体,抓握物体。在视觉上,婴儿能够识别一个动画角色是否友善,这些任务显示出了一个婴儿对这个物理世界以及人类社会的初步理解。
大量的研究表明,快速的非监督学习是可行的,因为人类的认知系统中已经先天地具备了基本结构,这些结构有助于人类获得有意义的概念,并且增进认知技能。
与现有的深度神经网络模型相比,人类认知学习和理解能力所具有的优越性很可能是因为人类认知系统中包含着大量的先天结构。通过对婴儿期视觉学习过程的建模,体现出了先天的结构以及后天学习过程的有效结合,并且人们发现那些含义复杂的概念,既不是先天存在的也不是后天学会的。
在这个“中间路线”中,先天概念并不是被开发出来的,而是通过一些简单的原型概念随着人类的学习过程一步一步演化成复杂概念的,这个模式很难说存在明确的学习训练过程。
比如说婴儿能够注意到人的视线以及人的动作之间的关联,当人的视线以及动作朝向相反方向的时候,能够察觉到其中的错误。大脑皮层先天的特定结构能够实现这一功能,并且能对输入的信息输出报错反馈。
“中间路线”助力人工智能
我们也可以把这种先天的结构构建于人工神经网络中,使得人工神经网络的学习过程更加类似于人类。人们可以通过理解并模仿大脑的相关机制来完成这样的一个研究任务,或者从零开始开发一个全新的高效的计算学习方法。
科学家已经在这个方向上做了一些尝试。但总的来说,学习一个先天的结构与当前的学习任务并不相同,在这个问题上人类还是知之甚少。把先天结构与后天学习结合在一起,可能给神经科学和通用人工智能这两个学科都带来好处,并且能将二者结合为智能处理理论。
翻译:Leo
审校:王佳纯
编辑:王怡蔺
阅读原文:
http://science.sciencemag.org/content/363/6428/692
话题:
0
推荐
财新博客版权声明:财新博客所发布文章及图片之版权属博主本人及/或相关权利人所有,未经博主及/或相关权利人单独授权,任何网站、平面媒体不得予以转载。财新网对相关媒体的网站信息内容转载授权并不包括财新博客的文章及图片。博客文章均为作者个人观点,不代表财新网的立场和观点。